Theoretical Chemistry Group - Faculty for Chemistry and Pharmacy

Henryk Laqua

Henryk Laqua, M.Sc., PhD student
Room: B5.014
Phone: +49 89 2180-72403
E-Mail: henryk.laqua[at]cup.uni-muenchen.de
ORCID: 0000-0002-5401-696X

Research interests:

I work on developing efficient methods to compute exact (Fock-) exchange using seminumerical integration. That is, one integration of the necessary 4-center-2-electron repulsion integrals (ERIs) is carried out analytically whereas the other one is carried out numerically using real-space integration grids. This numerical integration is especially well suited for modern, highly parallel compute hardware, e.g., graphic processing units (GPUs). Therefore, implementing algorithms that can effectively utilize such high levels of parallelization is therefore also an important part of my research. Furthermore, I utilize rigorous integral estimates in order to exploit the intrinsic locality of the exchange-interaction to obtain an asymptotically linear-scaling algorithm (sn-LinK), that still executes in parallel.

Publications:

12 V. Drontschenko, D. Graf, H. Laqua, C. Ochsenfeld,
"Efficient Method for the Computation of Frozen-Core Nuclear Gradients within the Random Phase Approximation",
J. Chem. Theory Comput., in press (2022).
11 H. Laqua, J. C. B. Dietschreit, J. Kussmann, C. Ochsenfeld,
"Accelerating Hybrid Density Functional Theory Molecular Dynamic Simulations by Seminumerical Integration, Resolution-of-the-Identity Approximation, and Graphics Processing Units",
J. Chem. Theory Comput., 18, 6010-6020 (2022).
10 F. Sacchetta, D. Graf, H. Laqua, M. Ambroise, J. Kussmann, A. Dreuw, C. Ochsenfeld,
"An effective sub-quadratic scaling atomic-orbital reformulation of the scaled opposite-spin RI-CC2 ground-state model using Cholesky-decomposed densities and an attenuated Coulomb-metric",
J. Chem. Phys., 157, 104104 (2022).
9 L. Urban, H. Laqua, C. Ochsenfeld,
"Highly Efficient and Accurate Computation of Multiple Orbital Spaces Spanning Fock Matrix Elements on Central and Graphics Processing Units for Application in F12 Theory",
J. Chem. Theory Comput., 18, 4218-4228 (2022).
8 V. Drontschenko, D. Graf, H. Laqua, C. Ochsenfeld,
"A Lagrangian-Based Minimal-Overhead Batching Scheme for the Efficient Integral-Direct Evaluation of the RPA Correlation Energy",
J. Chem. Theory Comput., 17, 5623–5634 (2021).
7 H. Laqua, J. Kussmann, C. Ochsenfeld,
"Accelerating seminumerical Fock-exchange calculations using mixed single- and double-precision arithmethic",
J. Chem. Phys., 154, 214116 (2021).
6 J. Kussmann, H. Laqua, C. Ochsenfeld,
"Highly Efficient Resolution-of-Identity Density Functional Theory Calculations on Central and Graphics Processing Units",
J. Chem. Theory Comput., 17, 1512-1521 (2021).
5 A. Kreppel, D. Graf, H. Laqua, C. Ochsenfeld,
"Range-Separated Density-Functional Theory in Combination with the Random Phase Approximation: An Accuracy Benchmark",
J. Chem. Theory Comput., 16, 2985-2994 (2020).
4 H. Laqua, T. H. Thompson, J. Kussmann, C. Ochsenfeld,
"Highly efficient, linear scaling seminumerical exact-exchange method for graphic processing units",
J. Chem. Theory Comput., 16, 1456-1468 (2020).
3 H. Laqua, J. Kussmann, C. Ochsenfeld,
"An improved molecular partitioning scheme for numerical quadratures in density functional theory",
J. Chem. Phys., 149, 204111 (2018).
2 H. Laqua, J. Kussmann, C. Ochsenfeld,
"Efficient and Linear-Scaling Seminumerical Method for Local-Hybrid Density-Functionals",
J. Chem. Theory Comput., 14, 3451 (2018).
1 H. Laqua, J. Kussmann, C. Ochsenfeld,
"Density functional theory model for multi-reference systems based on the exact-exchange hole normalization",
J. Chem. Phys. (Communication), 148, 121101 (2018) [Editor's Pick and Editor's Choice 2018].